$5^{\text {th }}$ TWLWG Meeting - Helsinki, Finland 14-16 May 2013

Standard Constituent List Chris Jones - UKHO

Standard Constituent List

- Available on the IHO TWLWG website at http://www.iho.int/mtg docs/com wg/IHOTC/IHOTC Misc/ TWLWG Constituent list.pdf
- Users of the list take the data to compute the angular speed of each constituent based on the XDO (Extended Doodson Number).
- Sum the products of the XDO multiplied by the angular speed of each Orbital Element.
- However the angular speeds of the individual Orbital Elements are not listed in the document; so users research them from a variety of sources.
- Orbital Elements:

T: Mean Lunar Day
s: Sidereal Month
h : Tropical Year
p: Moon's Perigee
N : Moon's Ascending Node
p ': Perihelion

Information received from South Korea

| $\begin{array}{c}\text { Angular } \\ \text { Speed (W) } \\ \text { (deg/hr) }\end{array}$ | User-Researched Astronomical Arguments | | $\begin{array}{l}\text { Standard } \\ \text { Constituent List } \\ \text { Case 1 } \\ \text { (Current best) }\end{array}$ | $\begin{array}{l}\text { Case 2 } \\ \text { Simon et al. } \\ (1994)\end{array}$ |
| :--- | :--- | :--- | :--- | :--- | \(\left.\begin{array}{l}Case 3

Doodson

(1921)\end{array} \quad $$
\begin{array}{l}\begin{array}{l}\text { (IHO) } \\
\text { (H? }\end{array} \\
\hline \text { W for T } \\
\hline \text { W for s } \\
\hline 14.49205212\end{array}
$$ $$
\begin{array}{l}14.4920521201 \\
8\end{array}
$$\right)\)

Information received from South Korea

Matching the published speeds of each constituent;

- Ninth Diurnals 'failed the test'
- Results of calculated 4MK9 angular speed using Orbital Elements T and s
- angular speed for $4 \mathrm{MK9}=(9 \mathrm{x}$ angular speed of T$)+(1 \mathrm{x}$ angular speed of s$)$

Orbital Element	T	S	h	p	N	p'	Calculated angular Speed (deg/hr)			
							Case 1 (Current best)	Case 2 Simon et al. (1994)	Case 3 Doodson (1921)	Standard Constituent List (HO)
4MK9	9	1	0	0	0	0	130.97748560	130.97748560	130.97748552	130.977488
To 6 decimal places							130.977486	130.977486	130.977486	130.977488

Conclusions

- The differences noted by users is most likely to be caused by the precision of the angular speeds of the Orbital Elements T, s, h, p, N and p'
- The Standard Constituent List shows different results to 6 decimal places compared to that of the other cases (from Case 1 to Case 3).

Action?

- The angular speeds for each Orbital Element in the Standard Constituent List should be shown in the document (they are not shown there at the moment), and given to 7 places of decimals (minimum)
- The angular speeds of each tidal constituent in the Standard Constituents List should also be given to 7places of decimals (minimum).

